DEVOIR COMMUN

1ère spécialité mathématiques 15 Avril 2023

Lycée Jean-Jacques Rousseau, Montmorency

Durée: 3 heures

Sortie autorisée à partir de 2h de composition.

Ce sujet comporte 5 pages numérotées de 1 à 5 accompagnées d'une feuille d'annexe (numérotée 6). Seule la feuille d'annexe est à rendre avec la copie.

L'utilisation d'<u>une</u> calculatrice est autorisée, mais aucun prêt de calculatrice n'est permis.

Le sujet est composé de quatre exercices indépendants.

Vous êtes invité à faire figurer sur votre copie toute trace de recherche, même incomplète ou non fructueuse, que vous aurez développée.

Il est rappelé que <u>la qualité de la rédaction</u>, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Barème indicatif (sur 30 points):

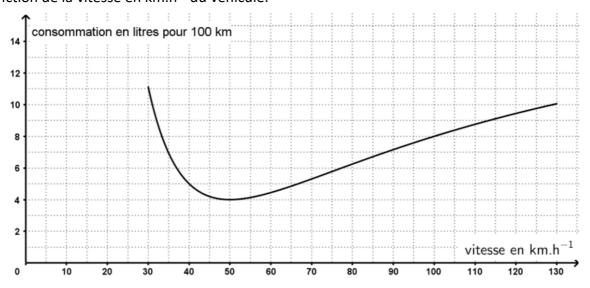
<u>Ex. 1</u>: 7 points; <u>Ex. 2</u>: 4 points; <u>Ex. 3</u>: 10 points; <u>Ex. 4</u>: 9 points

Exercice 1 : Étude d'une fonction

On s'intéresse à la consommation d'essence d'un véhicule en fonction de sa vitesse.

Partie A - Lecture graphique.

Le graphique ci-dessous représente la consommation d'essence en litres pour 100 km en fonction de la vitesse en km.h⁻¹ du véhicule.



- 1. Avec la précision permise par le graphique, répondre aux questions suivantes :
 - a. Quelle est la consommation du véhicule lorsque celui-ci roule à 40 km.h⁻¹?
 - b. Pour quelle(s) vitesse(s) le véhicule consomme-t-il 8 litres pour 100 km?
 - c. Pour quelle(s) vitesse(s) le véhicule consomme-t-il plus de 5 litres pour 100 km?
- **d.** Pour quelle vitesse la consommation du véhicule semble-t-elle minimale ? Quelle est alors cette consommation ?

Partie B - Modélisation.

Notons x la vitesse du véhicule en km.h⁻¹ avec $30 \le x \le 130$.

La consommation d'essence en litres pour 100 km est modélisée par la fonction f définie sur l'intervalle [30 ; 130], d'expression :

$$f(x) = \frac{20x^2 - 1600x + 40000}{x^2}$$

2. a. Montrer que résoudre l'inéquation f(x) > 5 équivaut à résoudre

$$3x^2 - 320x + 8000 > 0$$

- **b.** Résoudre alors cette inéquation et comparer les solutions avec les résultats obtenus à la question 1.c.
- **3.** a. Soit f' la fonction dérivée de la fonction f. Montrer que, pour tout $x \in [30; 130]$:

$$f'(x) = \frac{800(2x - 100)}{x^3}$$

- **b.** En déduire le tableau de variation de la fonction f.
- c. Démontrer la conjecture de la question 1.d.

Exercice 2

Pour chacune des cinq situations indépendantes ci-dessous, choisissez la seule proposition exacte parmi les quatre proposées. Aucune justification n'est attendue pour cet exercice. Une réponse inexacte n'enlève pas de point.

Vos réponses devront être écrites **sur votre copie**. Aucune réponse sur la feuille d'énoncé ne sera prise en compte.

1. On considère la fonction g définie sur $\left]-\infty$; $\frac{5}{2}\right]$ par :

$$g(x) = 3\sqrt{5 - 2x}$$

La fonction g est dérivable sur $\left|-\infty; \frac{5}{2}\right|$ et pour tout $x \in \left|-\infty; \frac{5}{2}\right|$, on a :

a.
$$g'(x) = \frac{3}{\sqrt{5-2x}}$$

b.
$$g'(x) = -\frac{3}{\sqrt{5-2x}}$$

c.
$$g'(x) = \frac{1}{12\sqrt{5-2x}}$$

d.
$$g'(x) = -\frac{1}{12\sqrt{5-2x}}$$

2. On considère la fonction h définie sur \mathbb{R}^* par :

$$h(x) = \frac{5}{x^4}$$

La courbe représentative de h admet au point d'abscisse 2 une tangente d'équation réduite :

$$a. y = \frac{5}{16}x - \frac{5}{4}$$

b.
$$y = \frac{5}{16}x$$

c.
$$y = -\frac{5}{8}x + \frac{25}{16}$$

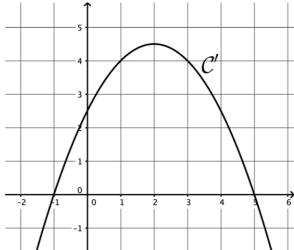
d.
$$y = -\frac{5}{8}x + \frac{5}{16}$$

3. On considère la fonction k définie sur $\mathbb R$ par

$$k(x) = 11 - (x+3)^2$$

La fonction *k* atteint

- **a.** sa valeur minimum en -3
- **b.** sa valeur minimum en 3
- **c.** sa valeur maximum en -3
- d. sa valeur maximum en 3
- **4.** On considère la fonction r définie et dérivable sur $\mathbb R$. On a représenté ci-dessous la courbe représentative $\mathcal C'$ de sa fonction dérivée r'.



On peut en déduire que la fonction r

- a. est une fonction affine.
- **b.** admet une tangente horizontale au point d'abscisse 2.
- c. est strictement négative sur l'intervalle [2;5].
- **d.** est strictement croissante sur l'intervalle [-1; 5].

- **5.** On considère la fonction p polynôme du second degré dont le discriminant est égal à 0. On peut en déduire que la courbe représentative de la fonction p:
 - a. n'admet aucun point d'intersection avec l'axe des abscisses.
 - **b**. possède un unique point d'intersection avec l'axe des abscisses.
 - c. possède exactement deux points d'intersection avec l'axe des abscisses.
 - d. possède exactement trois points d'intersection avec l'axe des abscisses.

Exercice 3: Suites numériques

Les parties de cet exercice peuvent être traitées de manière indépendante.

Partie I

Dans la station spatiale internationale (ISS), on fait une expérience de culture en apesanteur. Chaque semaine, on plante 100 graines de plus, mais $5\,\%$ de la culture précédente périt. On modélise la situation par la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=0$ et, pour tout $n\in\mathbb{N}$, u_n est le nombre de graines vivantes après n semaines.

On arrondira tous les résultats numériques à l'unité la plus proche.

1. a. Montrez que, pour tout $n \in \mathbb{N}$, on a :

$$u_{n+1} = 0.95u_n + 100$$

- **b.** Calculez u_1 , u_2 et u_3 .
- **2. a.** Prouvez que la suite (u_n) n'est pas arithmétique.
 - **b.** Prouvez que la suite (u_n) n'est pas géométrique.

On pose maintenant pour tout $n \in \mathbb{N}$:

$$v_n = 2000 - u_n$$

- **3. a.** Calculez v_0 , v_1 et v_2 .
- **b.** Prouvez que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison inférieure à 1. Vous donnerez cette raison.

Indication : on peut exprimer v_{n+1} en fonction de u_{n+1} , puis appliquer une formule de l'énoncé.

- **c.** Exprimez v_n en fonction de n (formule explicite de la suite (v_n)) puis donnez son sens de variation.
 - **d.** Déduisez en la forme explicite de la suite (u_n) et son sens de variation.
 - e. Combien il y aura-t-il de graines vivantes après 10 semaines ?
- 4. a. Calculez par une formule de cours

$$S_{v} = v_{0} + v_{1} + \cdots + v_{99}$$

(notation : $S_v = \sum_{i=0}^{99} v_i$)

b. On considère maintenant

$$S_u = u_0 + u_1 + \dots + u_{99}$$

(notation : $S_u = \sum_{i=0}^{99} u_i$).

Montrez que l'on a

$$S_u = 200\ 000 - S_v$$

puis calculez S_n .

Partie II

Soit la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=1$ et, pour tout $n\in\mathbb{N}$:

$$a_{n+1} = \frac{a_n^3 + 3a_n^2 + a_n + 3}{(a_n + 1)^2}$$

- **1.** Calculez a_1 et a_2 .
- **2.** Montrez par un calcul que pour tout $n \in \mathbb{N}$:

$$a_{n+1} - a_n = \frac{{a_n}^2 + 3}{(a_n + 1)^2}$$

3. Déduisez en le sens de variation de la suite (a_n) .

Exercice 4 : Géométrie

Dans un repère orthonormé $(0, \vec{i}, \vec{j})$, on donne les points

$$A(5; 2), B(-4; 0), C(4; 4), D(-2; 1)$$
 et $E(-1; -1)$.

- **1.** Tracer les points A, B, C, D et E sur la figure jointe en annexe.
- **2. a.** Calculer les coordonnées des vecteurs \overrightarrow{BC} et \overrightarrow{EA} .
 - **b.** En déduire que les droites (BC) et (EA) sont parallèles.
- **3.** Les points B, C et D sont-ils alignés ?
- **4. a.** Calculer l'équation réduite de la droite (BC).
 - **b.** Déterminer le réel y_0 pour que le point $M(24; y_0)$ appartienne à la droite (BC).
- **5.** On considère le quadrilatère *DCAE* :
 - a. Démontrer que le quadrilatère DCAE est un parallélogramme.
- **b.** Soit F le milieu du segment [DA]. Calculer les coordonnées du point F. Placer ce point sur la figure.
 - **c.** Démontrer que $\overrightarrow{EF} = \frac{1}{2}\overrightarrow{EC}$.
 - **d.** Calculer $\|\overrightarrow{DC}\|$, $\|\overrightarrow{CA}\|$ et $\|\overrightarrow{DA}\|$.
 - e. Démontrer que le quadrilatère DCAE est un rectangle.
 - **f.** Soit \mathcal{C} le cercle de centre F et de diamètre [DA]. Démontrer que E appartient au cercle \mathcal{C} .

Annexe pour le devoir commun de mathématiques du 15 avril 20232

A rendre avec la copie

Figure pour l'exercice 4

