Spécialité mathématiques Classe de première Contrôle n° 2

Sujet B

Mardi 16 novembre 2021

La calculatrice est autorisée. Le barème est indicatif. Le sujet à rendre avec la copie.

Dans tous les exercices on se place dans un repère orthonormé direct $(0; \vec{i}; \vec{j})$

Exercice 1 (6 points)

On considère la droite \mathcal{D}_1 dont l'équation réduite est y=-3x+5 et la droite \mathcal{D}_2 dont une équation cartésienne est 4y+12x+5=0

- **1. a.** Déterminer les coordonnées du point A_1 intersection de la droite \mathcal{D}_1 avec l'axe des ordonnées.
- **b.** Déterminer l'abscisse du point B_1 de la droite \mathcal{D}_1 dont l'ordonnée est 17.
- **2. a.** Déterminer les coordonnées du point A_2 intersection de la droite \mathcal{D}_2 avec l'axe des abscisses.
- **b.** Déterminer l'ordonnée du point B_2 dont l'abscisse est 3.
- **3.** Montrer que les vecteurs $\overrightarrow{A_1B_1}$ et $\overrightarrow{A_2B_2}$ sont colinéaires. Que peut-on en déduire pour les droites \mathcal{D}_1 et \mathcal{D}_2 ?
- **4.** Donner l'équation réduite de la droite \mathcal{D}_2 .

Exercice 1 (5 points)

On considère les deux droites suivantes :

- * \mathcal{D}_3 d'équation cartésienne 6x + y 3 = 0;
- * \mathcal{D}_4 d'équation cartésienne 3x 7y + 2 = 0.
- **1.** Donner un vecteur directeur $\overrightarrow{u_3}$ de la droite \mathcal{D}_3 et un vecteur directeur $\overrightarrow{u_4}$ de la droite \mathcal{D}_4 .
- **2.** Montrer que les vecteurs $\overrightarrow{u_3}$ et $\overrightarrow{u_4}$ ne sont pas colinéaires. Que peut-on en déduire pour les droites \mathcal{D}_3 et \mathcal{D}_4 ?
- **3.** Montrer que le point $K\left(\frac{19}{45}; \frac{7}{15}\right)$ est l'intersection des droites \mathcal{D}_3 et \mathcal{D}_4 .
- **4.** Donner une équation cartésienne de la droite \mathcal{D}_5 parallèle à \mathcal{D}_4 et passant par le point L(3; -1).

Exercice 3 (5 points)

On considère les points

$$R(2; -7); S(8; 1) \text{ et } T(-3; 12)$$

- **1.** Montrer que les points R, S et T ne sont pas alignés.
- **2.** Déterminer les coordonnées du point U tel que le quadrilatère RSTU soit un parallélogramme.
- **3.** Déterminer une équation cartésienne de la droite (RS).
- **4. a.** Déterminer une équation cartésienne de la droite \mathcal{D} passant par T et parallèle à (RS).
- **b.** Vérifier à l'aide de cette équation cartésienne que le point U appartient à la droite \mathcal{D} .

Exercice 4 (6 points)

1. Convertir en radian les mesures d'angle suivantes données en degré :

2. Convertir en degré les mesures d'angle suivantes données en radians :

$$a.\frac{5\pi}{a}$$
 rac

b.
$$\frac{2\pi}{7}$$
 rad

3. Pour chaque couple de réels, indiquer, en justifiant, s'ils correspondent à la même position sur le cercle trigonométrique.

a.
$$\frac{4\pi}{13}$$
 et $-\frac{35\pi}{13}$

b.
$$\frac{8\pi}{5}$$
 et $\frac{38\pi}{5}$

a. $\frac{4\pi}{13}$ et $-\frac{35\pi}{13}$ **b.** $\frac{8\pi}{5}$ et $\frac{38\pi}{5}$ **4.** En vous ramenant à une valeur connue, déterminer les valeurs *exactes* suivantes :

a.
$$\sin\left(-\frac{7\pi}{4}\right)$$
c. $\cos\left(-\frac{35\pi}{6}\right)$

b.
$$\cos\left(\frac{13\pi}{3}\right)$$
d. $\cos\left(\frac{5\pi}{2}\right)$

c.
$$\cos\left(-\frac{35\pi}{6}\right)$$

d.
$$\cos\left(\frac{5\pi}{2}\right)$$

5. On admet que $\cos\left(\frac{\pi}{5}\right) = \frac{\sqrt{5}+1}{2}$. En déduire la valeur *exacte* de $\sin\left(\frac{\pi}{5}\right)$.